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SUMMARY

Field time integrators with second-order-accurate numerical schemes for both the ¯uid and the structure are
considered for unsteady Euler aeroelastic computations. We show that if these schemes are simply coupled and
used straightforwardly with subcycling, then accuracy and stability properties may be lost. We present new
coupling staggered procedures where momentum conservation is enforced at the interface. This is done by using
a structural predictor. Continuity of structural and ¯uid grid displacements is not satis®ed at the ¯uid=structure
interface. However, we show on a two-degree-of-freedom aerofoil that this new type of method has many
advantages, e.g. accuracy of conservation at the interface and extended stability. The supersonic ¯utter of a ¯at
panel is simulated in order to numerically prove that the algorithm gives accurate results with arbitrary
subcycling for the ¯uid in the satisfying limit of 30 time steps per period of coupled oscillation. # 1997 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid=structure interaction and especially aeroelasticity are ®elds where numerical simulation can be

used to improve the physical understanding of coupled instabilities such as those appearing in

aircraft1 or suspended span bridges.2 However, the direct, fully coupled solution is still out of reach.

Actually, we have at our disposal complex, ef®cient and robust time integrators for both the structure

and the ¯uid ¯ow. The natural way to predict the aeroelastic behaviour of a ¯exible structure in a

¯uid ¯ow would result from the coupling of methods for both decoupled ®elds.3

We consider here staggered procedures for the transient solution of coupled aeroelastic problems.

In this type of algorithm the ¯uid and the structure are successively but not simultaneously time-

integrated. The structure determines at least partially the ¯uid boundaries, whereas the ¯uid exerts a

pressure force along the ¯uid=structure interface. Since the ¯uid domain boundaries are time-

dependent, it becomes necessary to perform the integration of the ¯uid equations on a moving mesh.

Among a number of existing methods we have chosen dynamic meshes4 and ®nite volume methods

based on the ALE formulation of the Euler equations.5 Even if computational ¯uid dynamics (CFD)
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and structural dynamics (SD) methods are accurate and ef®cient, the global coupling procedure is

crucial. Recently, new partitioned procedures have been elaborated for coupled linear one-

dimensional problems,6 ensuring properties often veri®ed by each method for both decoupled ®elds,

e.g. stability and conservation.

In this paper these methods are adapted and extended to non-linear Euler two-dimensional

aeroelastic cases and a new type of staggered procedure with a structural predictor is introduced,

allowing us to obtain accuracy and robustness. These methods are tried on two test cases. The ®rst

physical problem consists of an NACA 0012 aerofoil oscillating in a transonic ¯uid ¯ow. The second

problem is the supersonic ¯utter of a ¯at panel with in®nite aspect ratio. We use a second-order-

accurate, implicit, unconditionally stable time scheme for the structure and an explicit second-order-

accurate time scheme for the ¯uid. The ¯uid time step is limited by CFL-like stability conditions and

¯uid subcycling is desirable. It allows us to perform fewer structural integrations. A successful

subcycling mixed with inter-®eld parallelism can signi®cantly reduce the total solution time.7

The paper is organized as follows. In Section 2 we present the physical test cases. In Section 3 we

present the whole set of CFD and CSD methods that we use for the resolution of decoupled ®elds. For

the ¯uid we introduce the ¯uid grid motion algorithm, the ALE formulation of the Euler equations on

this moving grid and the Godunov ®nite volume method based on a MUSCL-type second-order

extension of Roe's approximate Riemann solver. For the structure we reformulate the structural

equations into a matrix form in order to use a simple trapezoidal rule. The most original part of our

contribution is reported in Section 4. We review some enhancements made on global algorithms that

are necessary for the effective coupling of both ®elds. We start from the simplest staggered

procedure.8 We then add time averaging of the aeroelastic forces exerted on the structure and

introduce a structural predictor. We discuss the role of the structural predictor in terms of global

energy and momentum conservations. Finally, numerical results on supersonic panel ¯utter are

presented and discussed in Section 5.

2. PHYSICAL PROBLEMS

2.1. Oscillating aerofoil in transonic inviscid ¯ow

We are interested in the numerical simulation of a two-dimensional transonic inviscid ¯ow around

an oscillating NACA 0012 aerofoil. This case is a simpli®cation of future three-dimensional test

cases where the ¯uid domain surrounds the aircraft. This kind of simulation allows aircraft designers

to know at a lower cost the characteristics of their wings=aeroplanes when they are coupled with the

¯uid ¯ow.

Structural model

The aerodynamic surface of the aerofoil is assumed rigid. Only two degrees of freedom are given:

the vertical displacement h and the rotation y around the centre of rotation (Figure 1).

The equations for the evolution of h and y can be written8 in dimensionalized form as

m�h� Sy
�y� ch

_h� khh � Fh; Sy
�h� Iy

�y� cy
_y� kyy � Fy; �1�

where m is the mass of the aerofoil, Iy and Sy denote the aerofoil inertial and static moments around

the elastic centre respectively, ch and cy are damping coef®cients, kh and ky are stiffness coef®cients

and Fh and Fy are the lift and moment (around the elastic centre C located at xC � ahb� respectively

exerted on the aerofoil by the ¯uid.

The structure is de®ned through non-dimensional numbers. They are listed in Table I along with

three unit setting assumptions for mass, length and time.
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All parameters in (1) are given as functions of the previous parameters by

b � c=2; oh � loy; kh � mo2
h; ch � 2xhohm;

Sy � mbxy; Iy � mb2g2
y; ky � Iyo

2
y; cy � 2xyoyIy:

�2�

The lift and moment coef®cients Fh and Fy are given by

Fh �
�
G

p~n � ~j ds; Fy �
�
G

p� ~CM� ~n�z ds; �3�

where p~n is the pressure force exerted by the ¯uid along the aerofoil G and M is a generic point on the

pro®le (Figure 2).

Fluid model

We consider a perfect gas ¯owing around the aerofoil. The ¯uid satis®es the Euler equations in the

time-dependent domain O�t� (Figure 3). O�t� is enclosed between the ®xed far-®eld ¯uid boundary

G1 and the oscillating aerofoil G�t�.
The vector of conservative variables, W � �r; ru; rv;E�T, where r; u; v and E respectively denote

the density, the x- and y-velocity and the volumic total energy, is the solution of

@tW � @x

ru

ru2 � P

ruv
�E � P�u

0BB@
1CCA� @y

rv
ruv

rv2 � P

�E � P�v

0BB@
1CCA � 0; �4�

Figure 1. Two-degree-of-freedom aerofoil

Table I. Unit setting assumptions and dimensionless coef®cients

m c oy ah xy gy xh xy l

1�0 kg 1�0 m 100 s71 ÿ1 1�8 1�865 0 0 1
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where the pressure P is given by the perfect gas law

P � �gÿ 1��E ÿ 1
2
r�u2 � v2��; with g � 1�4: �5�

The boundary conditions for W are the following:

(a) W � W1 along the far-®eld boundary G1
(b) ~u � ~n � ~uG � ~n along the aerofoil G�t� (we have written ~u � �u; v�T for the ¯uid velocity, ~uG and

~n for the local interface speed and normal).

The de®nition of the problem is completed with the value of W1. It is a function of three user-

speci®ed non-dimensionalized parameters M1;V* and m as follows:

r1 �
m

pmb2
; u1 � boyV*; v1 � 0;

E1 �
1

2
� 1

g�gÿ 1�M21

� �
r1u2

1:
�6�

We use M1 � 0�8;V* � 5�477 and m� 60, which sets a problem of interest because the transonic

M1 � 0�8 is beyond the stability limit of the aerofoil and therefore ¯utter can appear. The density

contours when ¯utter is reached are depicted in Figure 4. Two supersonic zones and two shocks

below and above the aerofoil move back and forth as the aerofoil oscillates. This phenomenon

produces negative damping.

Figure 2. Detail of integration of Fh and Fy

Figure 3. Time-dependent ¯uid domain G�t�
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2.2. Flat panel under supersonic inviscid ¯ow

We also test our methods on the more complex problems of a ¯at panel with in®nite aspect ratio in

a supersonic airstream. The surface skin panel has one side exposed to an airstream and the other side

to still air. We try to simulate the supersonic ¯utter of this panel.9,10

Structural model

The panel (Figure 5) is given a length L � 0�5 m, a uniform thickness h � 1�35� 10ÿ3 m, a Young

modulus E � 7�728� 1010 N m72, a Poisson ratio n � 0�33 and a density rS ÿ 2710 kg m73. The

panel is clamped at both ends (x � 0 and L). The pressure of the still air under the panel is equal to

the ¯uid pressure at in®nity, P1.

In order to have mass and stiffness matrices with large numbers on the diagonal, we use an actual

two-dimensional modelization for the structure. The ®nite element formulation is based on a plane

Figure 4. Non-dimensionalized density (minimum 0�7, maximum 1�3) around aerofoil at ¯utter

Figure 5. Flat panel with in®nite aspect ratio
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stress elastic model. The structure is discretized in Nx horizontal and Ny vertical quadrilateral

isoparametric elements. Each mesh point is given two degrees of freedom (vertical and horizontal

de¯ections). The mass and stiffness matrices of one quadrilateral isoparametric element are easily

computed.11 The quadrilateral isoparametric element has well-known drawbacks. It has quite poor

accuracy and is easily subject to `mesh locking' (decline of accuracy with shape distortion) when the

aspect ratio of elements is very different from unity. Nevertheless, this element was chosen in order

to generate complex structural matrices (like those obtained in real computations).

Finally, the ¯uid pressure forces are simply transferred from the ¯uid to the structure when both the

¯uid and structural meshes are matching. The computation of the applied pressure forces will be

detailed later for the non-matching case.

Fluid model

W is the solution of the Euler equations (4) and (5) in the ¯uid domain O�t� enclosed between G1,

the ®xed wall and the clamped ¯at panel. The boundary conditions are the following:

(a) W � W1 along the far-®eld ¯uid boundary G1; the state W1 is supersonic with no vertical

velocity �v � 0� and is completely de®ned by the pressure P1 � 25714 Pa, the density

r1 � 0�4 kg m73 and the Mach number M1
(b) v � 0 along the ®xed wall (slip condition)

(c) ~u � ~n � ~uG � ~n (slip condition on the moving boundary G�t��.

Instability

In this subsection we give a quick sketch of a simpli®ed analytical study on the linear instability of

the panel.9 This analysis is based upon shallow shell theory and a ®rst-order approximation of

aerodynamic theory where the in¯uence of three-dimensional aerodynamic effects is neglected (this

approximation is valid for M1 > 1�6�.
When the structural vertical de¯ection X is very small, the ¯uid pressure forces on the panel can be

approximated as a function of X and its derivatives. The global aeroelastic equation then reads

rSh
@2X

@t2
� Eh3

12�1ÿ n2�
@4X

@x4
� ÿ r1u21p�M21 ÿ 1�

@X

@x
ÿ r1u1�M21 ÿ 2�
�M21 ÿ 1�3=2

@X

@t
; �7�

where u1 denotes the gas velocity at in®nity. The boundary conditions for the de¯ection X (clamped

panel) are

X�0� � X�L� � @X
@x
�0� � @X

@x
�L� � 0: �8�

Frequencies for coupled modes are computed and the limit Mach number where an unstable

coupled mode appears can be estimated with a resolution method of Houbolt.12 For the present data

an instability appears at M1 � 2�27 with a pulsation o � 462 rad s71. The real part of the coupled

¯utter mode is clearly asymmetric (Figure 6) because of the action of the supersonic airstream. The

point with the maximal amplitude is located near x � 0�35 m.

This limit Mach number is used to test our numerical methods, since the exact solution is a perfect

(neither damped nor ampli®ed) oscillation. A glance at the results will tell us what amount of

numerical damping our algorithms produce and whether or not they are stable.
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3. NUMERICAL METHODS

In this section we present the numerical methods used for each ®eld, which are classical methods of

CFD (even though the ¯uid domain is time-dependent) or CSD. Our most important contribution in

this paper deals with the effective ¯uid=structure coupling and is presented in Section 4.

3.1. Numerical methods used for the ¯uid

We ®rst present the spatial discretization and the grid moving=updating schemes we use. Once we

have introduced the arbitrary Lagrangian±Eulerian (ALE) formulation of the Euler equations, we

®nish with the ®nite volume method used for the ¯uid on a dynamic mesh.

Spatial discretization: design and updating scheme

We assume that we have an initial unstructured triangulation Oh�0� of the ¯uid domain O�0�. The

boundary points of this triangulation are located either on the far-®eld boundary G1 (and they form

the set Gh
1) or on the aerofoil G�0� (set Gh�0�). We describe here the updating scheme for the ¯uid

mesh from time t1 to time t2. We assume that we know the location of the ¯uid=structure interface at

time t2. For the aerofoil problem we only need the values y�t2� and h�t2� of the two structural degrees

of freedom at time t2. For the panel problem we have to know the whole structural state at time t2.

The rest of Oh�t2� is obtained via a method proposed by Batina4 and generalized by Lesoinne and

Farhat.13 This method enables us to move the mesh with no addition or deletion of any vertex.

Brie¯y, each edge ij (between vertices i and j) is given a stiffness (e.g. the inverse of its length). We

seek the displacements ~di of all vertices from Oh�t1� to Oh�t2�. The vertices get back to equilibrium

when P
j2N�i�

kij�~dj ÿ ~di� � 0 for i 2 Oh=�Gh [ G1�; �9�

where N�i� is the set of vertices neighbouring i. The equation of displacements is solved with a

Jacobi-type iterative method in which the displacements (inside the domain) are initialized with a

linear prediction.

Figure 6. Vertical de¯ection for ¯utter mode (real part)
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ALE formulation

We present here the arbitrary Lagrangian±Eulerian formulation of the Euler equations (4). This

allows us to consider the classical Euler equations in a moving domain.14 ~x and ~x respectively denote

some mixed geometric co-ordinates and the laboratory co-ordinates. ~x plays the role of a moving

frame of reference linked to the mesh Oh�t�, i.e. the ~x-co-ordinates of the vertices do not depend on

time. Let us de®ne the Jacobian J and the mesh speed ~w by

J � det
@~x

@~x

����
t

 !
; ~w � @~x

@t
j~x: �10�

The ALE formulation of the Euler equations reads

@�JW�
@t ~x � J div~x

~�F � 0;
��� �11�

where

�Fx �
r�u

ru�u� p

rv�u
e�u� pu

0BB@
1CCA; �Fy �

r�v
ru�v

rv�v� p

e�v� pv

0BB@
1CCA; �u � uÿ wx; �v � vÿ wy: �12�

Integrating (11) on a ®xed cell C~x (corresponding to the cell C~x moving in the laboratory co-

ordinates) yields

d

dt

�
c~x

Wd~x

 !
�
�

C~x

div~x
~�F d~x � 0: �13�

Numerical schemes

We use a ®nite volume formulation of the previous ALE Euler integral equation (13). For each

vertex i, a median dual cell Ci is de®ned (Figure 7), @Ci denotes the boundary of this cell and N�i� is

the set of vertices j neighbouring i. @Cij stands for @Ci [ @Ci.

Figure 7. Cell and boundary for vertex i
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The spatial scheme takes the form

�AiWi�t �
P

j2N�i�
kg@Cijk �F�Wi;Wj;

eZij
!� � 0; �14�

where Wi is the averaged value of the ®eld W in cell Ci;Ai is the area of cell Ci; g@Cij is a time average

of @Cij (of length kg@Cijk and normal
e
nij
! oriented from Ci to Cj) and �F is a numerical ¯ux such that

Dtkg@Cijk �F�Wi;Wj;
eZij
!� �

�tn�Dt

tn

�
@Cij

~�F � Zij
!

ds

 !
dt: �15�

We use a Godunov method based on Roe's approximate Riemann solver for the hyperbolic ¯ux ~�F.

The numerical ¯ux �F in (15) is taken as

�F�Wi;Wj;
eZij
!� �

~�F�Wi� � ~�F�Wj�
2

eZij
!ÿ j ~a�Wi;Wj; eZ~ij� ÿ �gwij

�! � eZij
!�IjWj ÿWi

2
; �16�

where the matrix ~a�Wi;Wj; Z
eZij
!� is the Jacobian of the ¯ux ~�F � eZij

! taken at Roe's average Wij of the

two states Wi and Wj.
11 The absolute value signs in (16) are common to all Roe-type methods (the

matrix is diagonalized and absolute values of eigenvalues are computed).

N'Konga and Guillard15 have discussed a choice for
g
wij
�! and

eZij
!. This choice was advocated

because it gives the Jacobian ~a�Wi;Wj;
eZij
!� a propriety similar to Roe's linearization in the standard

case.16 It was also advocated by Farhat et al.10 for conservation reasons. Indeed, if the location of the

vertices are updated with the scheme

Sn�1
i � Sn

i � Dt~wn�1=2
i ; �17�

where Dt is the current time step, then a uniform ®eld W � W0 is conserved throughout the

computation (i.e. the volume is also conserved) if the cell areas are updated with the same time

scheme as in (14), i.e. according to

�Ai�t �
P

j2N�i�
kg@Cijk�ÿgwij

�! � eZij
!� � 0: �18�

The extension to a second-order accuracy follows the general idea of the MUSCL scheme initially

developed by Van Leer17 and adapted to unstructured ®nite elements by Fezoui.18 We have chosen

half-centred half-upwind gradients for the second-order extension. We refer the reader to References

11 and 16 for more details, especially on the treatment of boundary conditions.

Equation (14) can be seen as an ODE of the form @t�AW� �C�W� � 0. Time integration of this

ODE is done using the following three-step explicit Runge±Kutta scheme with low storage:

W �0� � Wn;

W
�k�
i �

An
i

An�1
i

W
�0�
i ÿ

1

An�1
i

Dt

4ÿ k
C�W �kÿ1��; k � 1; 2; 3;

Wn�1 � W �3�:

�19�

This time scheme is second-order-accurate. It is stable under a CFL-like condition on the ¯uid time

step Dt.19 Cell areas are always evaluated at the end of the current time step, which prevents actual

second-order accuracy for the temporal scheme. However, tests were made which showed that this is

not a source of signi®cant inaccuracy.
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3.2. Numerical methods used for the structure

Structural equations

For both model problems the linear structural equations are rewritten in matrix form as

M �X � D _X � KX � F: �20�
X still denotes the ®eld of structural displacements. M, D and K respectively are the mass, damping

and stiffness matrices. All three are symmetric and positive, M and K being positive de®nite. The

trapezoidal rule can be used for (20) in both cases. In the following, An;Vn and Xn respectively

denote approximations of �X�tn�, _X�tn� and X�tn�. Using the time step Dt � tn�1 ÿ tn, the trapezoidal

rule reads

Xn�1 � Xn � DtVn�1=2;

Vn�1 � Vn � DtAn�1=2;

An�1 such that MAn�1 � DVn�1 � KXn�1 � Fn�1
I ;

�21�

where Zn�1=2 stands for �Zn � Zn�1�=2 for any ®eld Z. Fn�1
I is an estimate for the applied force at time

tn�1. This scheme is second-order-accurate and unconditionally stable. When D � 0, no numerical

dissipation is added.

Pressure forces

We discuss here some choices concerning the input force Fn�1
I . If the pressure force on the

structure at time tn�1 is not known, we have to use an estimate. If we use a subcycled coupling

scheme, then we have to choose the pressure force we use (since we have computed these forces at

several different times). Actually, the structural integration depends a lot on the general coupling

procedure. The energy exchange at the ¯uid=structure interface depends on the time interpolation

used.

Geometrically, some choices have to be made. In the case of the aerofoil the generalized forces

detailed in (3) are integrated straightforwardly along Gh. For the panel ¯utter simulation the ¯uid and

structural meshes are not matching at the ¯uid=structure interface. Linear matching interpolations are

used (Figure 8). More precisely, the pressure PF!S applied to a structural point is the barycentric

weighted average of the neighbouring ¯uid pressures PL and PR. Reciprocally, the displacement

XF!S of a ¯uid grid point at the interface is the barycentric weighted average of the neighbouring

structural displacements XL and XR.

4. CONSTRUCTION OF EFFICIENT STAGGERED PROCEDURES

In this section we review the ®ne points of the actual coupling of the ¯uid and the structure. Some of

the methods presented here have been derived from one-dimensional studies.20 We consider in this

section the aerofoil simulation. Since each computation is inexpensive, we can make a lot of

numerical tests. In Section 5 we shall verify the accuracy and ef®ciency of the constructed staggered

procedures on the considerably more complex simulation of panel ¯utter.

Throughout this section we assume that ¯uid subcycling is desirable (which is the case indeed). We

would like to perform fewer structural time integrations (with a larger time step) than ¯uid time

integrations. This can lead to important savings in computational costs.6 Therefore we keep in mind

that we would like the maximum subcycling factor nF=S (number of ¯uid subcycles per structural time

integration) with the same accuracy.
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We use a ¯uid unstructured grid of 2280 vertices (120 vertices on the aerofoil) and 4320 triangles.

For all simulations the initial ¯uid ¯ow is the steady ¯ow around the structure with h � y � 0. At

time t � 0 the structure is given a vertical speed perturbation �_h � 3�42 m s71, _y � 0).

4.1. Choice for the pressure forces

Let us begin with the simplest staggered procedure. One time integration of DtS is performed as

follows.

1. Compute the generalized forces F in (1).

2. Perform a structural time integration (21) of DtS with Fn�1
I � F.

3. Update the mesh displacements on G and construct a new ¯uid grid as in (9).

4. Compute the grid velocities as in (17).

5. Perform as many ¯uid time steps (19) as necessary to complete the time step DtS.

We notice that continuity of the structure and ¯uid grid displacements is enforced at the end of a

global time step. However, continuity of both displacements and velocities can only be achieved with

an offset staggered procedure.21

Several choices are possible for the pressure forces of substep 1, depending on what kind of time

interpolation is used. The results for the aerofoil rotation y (in degrees) computed with two different

choices are compared with a reference result obtained with no subcycling and a very small time step

(Figure 9). The previous curve corresponds to F � Fn. The averaged curve corresponds to

F � �Fn�1=2 � 1

DtS

PnF=S

k�1

DtFk
Fnÿ1

k �22�

where the summation is extended over all subcycles, Fnÿ1
k being the pressure forces computed before

the kth subcycle in the previous time step. For this test we have taken DtS � 8�76� 10ÿ4 s. The

subcycling factor is nF=S� 60. We see that the choice for F has an obvious in¯uence on the numerical

results. We guess why the second method is worse that the ®rst one: the computed value for F is

roughly close to F�tnÿ1=2� (and in the case of the previous curve it would be F�tn��. Anyway, both

Figure 8. Interpolations at interface for non-matching grids
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schemes give results different from the reference curve. These preliminary results show that

importance of the choice for the pressure input forces.

4.2. Introduction of a structural predictor

Staggered procedures using a structural predictor were recently introduced and advocated.11 In

short, they allow one to reduce considerably the energy conservation errors. The general idea is

simple: assume one can construct with good accuracy a prediction of the state of the structure at the

end of the next time step, then one should perform the three last steps of Section 4.1 and ®nish with

the actual time integration of the structure. The new staggered procedure reads as follows.

1. Compute a prediction gX n�1 for the structural displacement after the current time step.

2. Update the mesh displacements on G and construct a new ¯uid grid as in (9).

3. Compute the grid velocities as in (17).

4. Perform as many ¯uid time steps (19) as necessary to complete the time step DtS.

5. Compute some input forces F in (1).

6. Perform a structural time integration (21) of DtS with Fn�1
I � F.

At the end of a time step, continuity of the structural and ¯uid grid displacements at the

¯uid=structure interface is a priori not satis®ed unless the structural predictor is perfect. As a ®rst test

we try the ®rst-order predictor for the structural displacement.

gXn�1 � Xn � DtSVn: �23�

For the input forces F of substep 5 we simply use Fn�1. Because the ¯uid was time-integrated ®rst,

this information is available. This is one of the most remarkable differences from a staggered

procedure without a structural predictor. As a matter of fact, these simple tricks are suf®cient to

obtain a result closer to the reference curve than the most accurate staggered procedure with no

predictor, reported earlier as `previous' (Figure 10). These results were obtained with

DtS � 8�76� 10ÿ4 s and nF=S � 60.

Figure 9. Aerofoil rotation with different pressure forces
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4.3. Role of the structural predictor

We can wonder what is the in¯uence of the structural predictor on the accuracy and stability of the

staggered procedure. We have compared the ®rst-order predictor (23) with three more accurate

predictors. The ®rst two are linear predictors and read

gXn�1 � Xn � DtS�1�5Vn ÿ 0�5Vnÿ1�; �24�
gXn�1 � Xn � DtSVn � Dt2

S

2
An: �25�

The third one is the result of a numerical integration of the structure with Fn, i.e.

gXn�1 � Xn � DtS
2
�Vn � gVn�1�;

eVn�1 �n �DtS

2
�An �eAn�1�;gAn�1 such that M gAn�1 � D gVn�1 � K gXn�1 � Fm:

�26�

We have made tests with up to 76 structural time steps per period of coupled oscillation (denoted

by TC in the sequel). The time step DtS is rather small but not negligible compared with TC. The

results are almost identical. For larger structural time steps the ®rst predictor (24) is the most

accurate, stable and inexpensive. However, in some cases where an implicit ¯uid solver is used (with

a large ¯uid time step), some iterations based on the same principle as (26) can be very ef®cient.

4.4. Energy conservation

We discuss here the origin of the enhanced ef®ciency (accuracy and stability) of the staggered

procedure with a structural predictor. Our discussion is based on energetic considerations and some

elements of demonstration are given `with the hands'. As a matter of fact, we only consider energetic

Figure 10. Aerofoil rotation with=without a structural predictor
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exchanges through an element of the ¯uid=structure interface (anyway, we do not discuss here some

®ne points of the spatial scheme but of the global procedure).

If the ¯uid is subcycled, then (the reader can check that) the energy received by the ¯uid through a

structural boundary element is roughly given by

DEF � ÿ
PnF=S

k�1

DtFk
Fn

k wn
k;

where wn
k is the boundary velocity during the kth subcycle. We assume that w is constant through all

subcycles �w � wn�1=2�. De®ning Fn�1=2 as in (22) yields

DEF � ÿ �Fn�1=2DtSwn�1=2: �27�
On the other hand, the energy received by the structure through a time integration with the

trapezoidal rule is

DES �
Fn

I � Fn�1
I

2
DtSVn�1=2;

where Fn�1
I is the input of the trapezoidal rule for the step tn ! tn�1. Finally, the total amount of

energy numerically created, DE � DEF � DES, is

DE � DtS

Fn
I � Fn�1

I

2

� �
Vn�1=2 ÿ �Fn�1=2wn�1=2

� �
: �28�

At the same time, the amount of momentum numerically created by the staggered procedure is

DQ � DtS
Fn

I � Fn�1
I

2
ÿ �Fn�1=2

� �
: �29�

Let us now consider a typical staggered procedure with no structural predictor. By construction, the

trapezoidal rule yields wn�1=2 � Vn�1=2. The input force Fn�1
I is necessarily outdated, since �Fn�1=2 is

unavailable. Besides, it is very dif®cult to ®nd a good predictor for �Fn�1=2 (because the ¯uid time

scale is smaller) in order to have a limited amount of momentum or energy created. Therefore a

staggered procedure with no structural predictor will not have a large stability and accuracy domain.

In contrast, for a staggered procedure with a structural predictor, �Fn�1=2 is available when the

structure is time-integrated from tn to tn�1. Let us de®ne the matching error en by en � eXn ÿ Xn.

Taking Fn�1
I � 2 �Fn�1=2 ÿ Fn

I yields

DQ � 0; DE � �Fn�1=2�en�1 ÿ en�: �30�
The reader can notice that the use of a structural predictor induces an exact exchange of forces

between the ¯uid and the structure at the interface. Moreover, (30) shows that the error on the energy

exchange is controlled by the accuracy of the structural predictor. The staggered procedure is also

¯exible, since no de®nite type of predictor is requested.

We now test several choices for the input forces Fn�1
I of the trapezoidal rule for staggered

procedures with a structural predictor. The rotations of the aerofoil computed with different inputs

�DtS � 8�76� 10ÿ4 s� TC=80 and nF=S � 60) are compared with the reference result (Figure 11).

We tested the following inputs:

averaged forces Fn�1
I � �Fn�1=2;

last forces Fn�1
I � Fn�1;

corrected forces Fn�1
I � 2 �Fn�1=2 ÿ Fn

I :

�31�
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The results with averaged forces is not really good. The ampli®cation of the ¯utter has changed. This

was clearly foreseen by (28). Last forces give a much better result. However, tests with larger time

steps showed that the resulting staggered procedure is quickly unstable �DtS � TC=70 seems to be a

limit). Finally, corrected forcesÐwhich imply exact momentum conservationÐgive a slightly better

result than the preceding one. Moreover, the resulting staggered procedure happens to be stable up to

DtS � TC=30.

4.5. Grid motion and subcycling

In the preceding sections we have only considered grid motions with a constant speed during each

global time step. Actual mesh motions are only computed before each global time step (with Jacobi

iterations on (9)). Before each ¯uid time step, grid point locations are simply linearly time-

interpolated, which saves some computational time. However, ®nite volume geometric data have to

be fully updated. For each structural time step we compute once and for all subcycles the mesh

speeds. This would not have been the case if we had chosen some more accurate interpolation of the

grid point locations. However, Farhat et al.10 con®rm that the use of a parabolic or linear path for the

¯uid mesh during subcycles gives no signi®cantly different results.

This might be different for cases where very few time steps are used for each coupled period of

oscillation: the structural speed could vary a lot from one time step to the next and the use of a linear

path for the ¯uid mesh could induce some additional numerical diffusion (due to the difference

between the ¯uid velocity and the mesh speed at the ¯uid=structure interface during the ®rst ¯uid

subcycles of a global time step.)

5. APPLICATION TO PANEL FLUTTER SIMULATION

In this section we apply the previous enhancements to the numerical simulation of panel ¯utter

described in Section 2.2. We ®rst perform some computations based upon shallow shell theory. We

have used a ®nite difference discretization of (7) with 299 points. The total ¯uid unstructured grid is

made of 1654 vertices and 2936 triangles. For all these simulations we use second-order ¯uxes for the

resolution of the Euler equations, along with the explicit Runge±Kutta time integrator (19). We use a

Courant number equal to 1�4, which is within the stability domain of the ¯uid time integrator.

Figure 11. Energy conservation for different input forces
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As a reference computation we ®rst use a structural time step DtS � 1�23� 10ÿ6 s, which induces

no subcycling in the ¯uid. Compared with the ®rst period of the panel, this time step is very small

(remember that the period for the ®rst structural mode is T1 � 31�9 ms, which yields

T1=DtS� 25,900!). The initial condition for the problem is the following. We compute a steady

state ¯ow around the structure, which is perturbed along its second mode.6 Then the structure is given

back the ability to move and the simulation starts. With M1 � 2�23 the oscillations go on with no

ampli®cation or damping after a transient time (Figure 12). Instability is just reached and this gives

foundation to the following discussion on the numerical properties of our method.

Numerically, we found the limit Mach number �M1 � 2�23, which is in good agreement with the

theoretical �M1 � 2�27. We also ®nd numerically that the ¯utter pulsation is �o � 452 rad s71, which

is also in good agreement with the theoretical �o � 462 rad s71. Throughout this section, TC denotes

the coupled period of oscillation at ¯utter �TC � 13�9 ms). These slight discrepancies might be linked

to the relative coarseness of the ¯uid mesh. This ®rst computation will stand as a reference in the

sequel.

We now test the staggered procedures with a structural predictor. We use the corrected forces (31)

and a constant mesh speed during subcycles. We choose a structural time step DtS � 0�2 ms� TC=70.

This gives a subcycling factor nS=F � 161. We have plotted (Figure 13) the mass product of the

displacement ®eld X with the second structural mode (i.e. XT
2 MX� for the predictors (24) and (25).

The predictor (25) is unstable with this time step. In contrast, the predictor (24) is stable and gives

results in very good agreement with the reference curve.

For the predictor (24), bigger subcycling factors and structural time steps were considered (Figure

14). The method is perfectly acceptable for DtS � 0�4 ms� TC=35 (nF=S � 322�, but for

DtS � 0�6 ms� TC=23 �nF=S � 483� we have a rather poor de®nition of coupled oscillations. The

scheme appears to be slightly inaccurate and unstable, as could be predicted.

In order to check whether our algorithm goes on well with a lot of degrees of freedom, we go back

to the quadrilateral isoparametric ®nite element formulation of the plane stress elastic model of

Section 2.2. We use 2221 points on the length and seven points on the height of the panel. This makes

31,094 structural degrees of freedom. With these data the aspect ratio for the elements is perfect, so

no mesh locking appears. We use skyline storage for the matrices, which reduces the problem to a

Figure 12. Vertical de¯ection at x � 0�35 mÐreference computation
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million terms. This ®ne discretization is not needed for accuracy; we have designed this structural

mesh in order to emphasize the computational time that can be saved with an ef®cient ¯uid

subcycling.

A reference computation with a small time step DtS and no ¯uid subcycling shows that ¯utter

appears just under M1 � 2�24. The aim of an industrial simulation could be the determination of the

¯utter limit for this structure. Our point is to prove that our staggered procedures with ¯uid

subcycling allow an accurate determination of the limit Mach number. Therefore we test our

staggered procedure with the predictor (24) and corrected forces (31) for different Mach numbers.

We ®rst perform computations with M1 � 2�24 (Figure 15). The curve with DtS � 0�4 ms� TC=35

compares well with the reference curve. In contrast, the curve with DtS � 0�6 ms� TC=23 is

inaccurate. Thirty time steps per period of coupled oscillation seems to be the accuracy and stability

Figure 13. X T
2 MX with different predictors (nS=F� 161)

Figure 14. X T
2 MX with predictor (24) and different subcycling factors nS=F
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limit for our algorithm, which is rather reasonable. We then make similar computations with

M1 � 2�23 (Figure 16). Again the same conclusions on the accuracy of the staggered procedure hold.

Moreover, the mass product curves (with no subcycling or with DtS � TC=35� are slightly damped

at M1 � 2�23 and ampli®ed at M1 � 2�24. This shows numerically that the stability of the proposed

staggered procedure with a structural predictor is not a consequence of the excessive production of

numerical damping. On the contrary, this procedure allows us to detect that the ¯utter Mach number

lies in [2�23; 2�24]. In addition, the procedure is stable and accurate with heavy ¯uid subcycling up to

nS=F � 323 and a global time step DtS � TC=35.

The costs of the previous computations (made on a Cray Y-MP2E=232) are listed in Table II. In

our tests the vectorized versions of the ¯uid procedures are notably more ef®cient than the structural

Figure 15. X T
2 MX with several subcycling factors nS=F at M1 � 2�24

Figure 16. X T
2 MX with several subcycling factors nS=F at M1 � 2�23
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procedures, because a non-vectorized skyline solver is used in our computations. However, subcyling

can lead to dramatic savings when the structure is actually complex and time-consuming.

6. CONCLUSIONS

In this paper we introduced staggered procedures with a structural predictor for ¯uid=structure

interaction simulations. We considered partitioned procedures where the structural time scheme is

implicit and the ¯uid time integrator is explicit. In this particular context where ¯uid subcycling is

desirable, these staggered procedures are accurate, stable and ef®cient.

Because of the use of a structural predictor, the proposed procedures do not satisfy continuity of

the structural and ¯uid grid displacements=velocities at the ¯uid=structure interface. However, they

allow an exact numerical exchange of momentum through the moving interface. Moreover, the

energy arti®cially created because of staggering is controlled by the accuracy of the predictor used for

the structural displacement at the end of the current time step. This prediction is corrected by the

actual integration of the structure using a corrected time-averaged ¯uid pressure force.

The most stable and accurate staggered procedure with a structural predictor proposed in this paper

was used to determine the supersonic ¯utter limit of a ¯at panel. The ¯utter limit was successfully

located in the very sharp interval [2�23; 2�24]. This shows numerically that the procedure is stable and

accurate, even under heavy ¯uid subcycling. It produces no numerical damping if the number of

structural time steps per period of coupled oscillation is at least 30, which is more or less the weakest

reasonable condition that could be imagined for this kind of staggered procedure.

The ®rst results presented here are very promising, since heavy subcycling can reduce dramatically

the computational cost of numerical simulations with complex structures. Besides, this quite general

staggering algorithm can be adapted to implicit=implicit partitioned procedures. Extensions to more

complex con®gurations in two and three dimensions are currently in progress.
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